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On the basis of the approach in /l, 2/ we solve the problem of optimal impulse 

control under random perturbations. We assume that the control resources are 

limited ; control performance is evaluated by a desired final state of the system. 

We examine both the case of multiple corrections, when there is no restriction 

on the number of control impulses, as well as the case of single correction. The 

synthesis problem is reduced to a boundary-value problem with a free boundary 

for a parabolic equation (the Bellman equation). The number of independent 
variables is decreased by picking out classes of group-invariant solutions. A fur- 

ther solution is effected by the finite-difference method, using asymptotic ex- 

pansions. We present the results of calculations. We have found certain exact 

analytic solutions. Problems of impulse correction under measurement errors 
were considered earlier in /3, 4/. A method using quasi-variational inequalities 

has been proposed in /5, 6/ for solving the impulse control problems arising in 
inventory control theory. 

1. Statement of the problem. Let the equations of motion have the form 

xk* = a (t) uk + b (t) &, xk (to) = ~‘9 k=i, 2, . ..v n (1.1) 

Here t is time, t” < t < T, xk and nkare the components of the phase vector and 

the control vector, Ek are independent white noises of unit intensity, t” and x0 = (xl', 

xzo, . . . . x,“) are the initial data. The functions a (t) > 0 and b (t) > 0 char- 
acterize the control effectiveness and the intensity of the random perturbations, respect- 

ively. We are required to find the control satisfying the constraint 

l”dt < cf’, qo>0 (1.2) 

and minimizing the mean of a function of the final state’s radius vector 

I= (F(r(T))), r = i xi2 I’* 
( 1 i=l 

1.3) 

The function F (r) possesses the properties 

F (r) > 0, F’ (r) > 0 P>O) (1.4) 

Here the prime denotes the derivative with respect to r. Problem (1.1) - (1.3) is solved 
in two cases : in the absence of restrictions on the number of possible control impulses 
(multiple correction) and under the assumption of only one impulse (single correction). 

We introduce a variable 9, equal to unexpended control resources, by the relation 

Q = - (Ui2 + usa + . . . + L&y’, q (to) = q” (1.5) 
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We seek the control u in the synthesis form as a function of arbitrary initial data l”, I?, 

4’. We remark the optimal control problem for the system 

y;= U(+.&+b(t)&, k==1,2 ., ( . . . ) n 

inwhich a, b, uk, Ek h ave the same meaning as in (1.1) and which describes the mo- 

tion of a dynamic system under the action of controls and random perturbations, reduces 

to problem (l.l)-(1.3) by the change of variables zh = y, f (T - 8) yak, I% =: ‘i, 

2 7 * ..,?z. 

2, Barlc equrttonr, We consider the multiple correction problem. By S (t, 

X, Q) we denote the minimal value that ~nc~onal (1.3) can achieve in problem (l.l), 

(1.3), (1.5) under the initial conditions to = t, z0 = z, (I” = q. From the state- 

ment of problem (1. I.), (1.3), (1.5) it follows that function s is invariant relative to 

rotation transformations in the space of $1, xs, s a 9 , x=. This permits us to treat the 

function 5’ as a function of the three variables 
T 

‘r= 5 b2(h)dh, r = (Xl2 + X$2 + . . (I + It;;l)“*, q (2.1) 
t 

The variable Z has been introduced to simplify the subsequent relations. Function S (7, 
r, q) is defined in the domain D = {‘t, r, q: z > 0, r > 0. q > 0) and in this 
region satisfies the Bellman equation which can be derived by the same method as in 
Sect. 3 of /lf. As a result we get that the form of the equation depends upon the value 

of the function 
Q = a* CT> s, + 8, (2.2) 

The value of 0 < 0 everywhere in D. The a, (z) in (2.2) denotes the function 
obtained from a (t) as a result of substi~tion (2.1). As in /l, 2/ it turns out in the do- 

main D1, which is defined by the condition Q < 0, the function S satisfies the equa- 

tion 

s, = +,r -j- +- S’] (2.3) 
Y 

In the domain D, = D \ 0, we have Q = 0 and, consequently, 

s (z, r, 4) = R (r - a, 6) 4% T) (2.4) 

(R is an arbitrary function of two variables, yet to be defined). The domains L), and 

D, have the following meaning. An uncontrolled motion subject to random perturbations 

takes place in D1. An impulse correction is made in D, , by whose action the phase 

point (T, r, 4) is shifted along a characteristic of the equation Q = 0 and either it 
shows up on the boundary I? of domains D, and D, or the control resources are exhaus- 
ted. The determination of the boundary r solves the optimal control synthesis problem. 

The following boundary conditions on the boundaries of domain D exist for the func- 

tion S (‘6, F, q), which is a solution of Eqs. (2.3) and (2.4) in domains D,, D, . From 
(1.3) follows 

(2.5) 
The condition 

s, (71, r.7 9) 1 +=o 0 (2.61 

follows from the symmetry properties of problem (1. l), (1.3), (1.5). When q i) the 
function S (r, r., 0) :: &‘” (9, r) corresponds to uncontrolled motion and satisfies the 
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boundary-value problem 

Ss” - + [S,,” + +Sro] = 0, S” (0, r) = F(r), Sro(t, 0) =O (2.7) 

In certain cases the solution of this problem can be written out in analytic form. For 
example, for F (r) = r2 we have 

s (rt r, 0) = S” (t, r) = rz + IZT (2.8) 

The smoothness condition for function 0 

OI,=O, -+ol,.=o (2.9) 

should be fulfilled on r /l/. Thus, the solving of the synthesis problem is reduced to 

the seeking of the position of boundary 1’ by solving a boundary-value problem for 

Eq. (2.3) with conditions (2.5), (2.6). (2.8). (2.9) in domain D,. 

We pass to the single correction case. 3y S* (z, r) we denote the minimal value of 

functional (1.3) in problem (1. l), (1.2) under the condition that only one corrective 

impulse is possible. Up to the instant of correction the system is subjected to the exter- 

nal random perturbations alone. As shown earlier, the equation 

S,Q - +,,q + -+ s,q = 0 (2.10) 

for S* is valid in an appropriate domain &of variables T, r, q . The function S* 

must satisfy boundary conditions analogous to (2.5), (2.6) 

sq (0, r) = F (r)‘), i?,q (7, 0) = 0 (2.11) 

In addition, when q = 0 , Sq must coincide with the function So (z, r) from (2.7). 

To derive the conditions to be imposed on function S* at the correction instant, we note 

that here the variable r is instantaneously changed by an amount a, (‘t)~, where x is 

the amount of resource expended. 

Let us show that x = 4 always for an optimal correction. Ey r+ and r- we denote 
the value of r before and after correction. It is natural to examine only those x for 

which f - a, (T) x > 0. Further, let x < q. Two cases can arise after the correction: 
either rf > 0 or r + = 0, i. e. total compensation holds. ~.n both cases the correction 

proves to be nonoptimal. In the first case (rf > O) we increase the magnitude of the 
corrective impulse x1 so as to fulfill the conditions x < x1 < 4 and rl+ = r- - 

(I* (t) ~1 > 0. Since a, (z) > 0, we obtain rl+ < r+ and after correction the uncontrol- 

led motion starts with a lesser value of r. Therefore, at the end of the process, when 
T : o , the value of functional (1.3) is smaller under correction with impulse x1 than 

with impulse x and the correction being examined is not optimal. In the second case 

(r+ =z (1) the correction can be applied later, i.e. for a smaller value r2 < t of reverse 
time. We choose the instant z, such that total compensation is possible at instant z,, 

i.e. so as to fulfill the conditions r~+ = r- (z,) - G (TV) x2 z 0, x2 c< y. This can be 
done by a choice of z, and x,,because of the continuity of a, (t) and because of the 

fact total compensation (r+ --= 0) is possible at the instant T with an incomplete expen- 

diture of resources (x < q}. After correction at instant t2 the uncontrolled motion, just 
as when correcting at instant 7, starts from the origin (r2+ = 0). But since Z, < z, the 
time of uncontrolled motion is decreased and, therefore, the functional (1.3) to be mini- 
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mized is lesser in the case of correction at instant 4. Thus, in both cases the assump- 

tion x < q contradicts the optimality of the correction, and 3c =- 11 for optimal correc- 

tion. This fact can be proved with the aid of the maximum principle for parabolic equa- 
tions. 

As a result of correction I’ is changed to r - n, (z) Q, while since the motion is 

uncontrolled after correction, the function SQ (‘c, 4) coincides with ,!?‘(a, r - <rr (z) q) 

at the instant of correction, where 5’” is defined by relations (2.7). Thus, on the bound- 

ary y of the domain 6r of unclontrolled motion we have the boundary condition 

S’l (r, r) IY = S” (z, r - a, (r) q) (2.12) 

The second boundary condition on y is analogous to (2.95 and is 

Srq (2, r) Iy = S,” (a, r - a* (4 4) (2.13) 

From the definition of domain 6, it follows that if the motion starts in 6, = 6 \ ci,, 

where 6 -= {a, r: r >O, r>O}, then correction is applied at the initial instant. 

In domain 6, the function SQ is defined by the equality 

As” (2, r) s-’ (a, r - a, (4 9) (2.14) 

In summary we conclude that the optimal control in the problem under consideration 
is characterized by the following factors: it is always impulsive; the direction of the impulse 

is opposite to the direction of the phase radius vector; the impulse correction corresponds 

in the phase space (r, f, q) to a motion along the characterisitics of Eq. (2.9) toward 

the side of decreasing 9. In multiple correction the magnitude of the impulse is deter- 

mined by the value q8 < 4 necessary for hitting, from a given point ‘6, r, q of domain 

U, , onto the boundary I? along the characteristic of Eq. (2.9), passing dough this point; 

if such an encounter is impossible, then all control resources are spent. In the single cor- 
rection case the magnitude of the impulse always equals the whole control resource q. 

3. Sslfrlmflar variables and certain exact aolntfons, Hereand 
later on we assume that the functions /J (r), a (t), 0 (t) have the form 

P (r) -- r2, a (t) = A, (T - t)“, b (t) -: R, (1’ - t)@ (3.1) 

where A,, B,, a, @ are given constants. In this case, according to the formulas in 

Sect. 2, we obtain a, (z’) :7= Azp, where p = U / (‘i f @), A is a constant. Under 
these conditions the boundary-value problems in Sect. 2 are invariant relative to the 

following one-parameter group of transformations : 

I‘--+ Cr: z --f C%, 4 - c-37 s -+ PS, p : a /- (1 + 2fi) (3.2) 

where C is a constant. Consequntly, these boundary-value problems have selfsimilar 
solutions invariant relative to group (3.2). For p > ‘i, we seek such solutions in the 
form 

S 6, r, q) = rW (Y, 4, sq (7, r-) = TV (y, 2) (3.3) 

y 7: JQ@--%, s ~=2 rr-‘” 

The bounda~-vaue problem (2. Z), (2.5), (2.6), (2.8), (2.9) in the domain D, of vari- 
ables T. r, q is transformed under substitution (3.3) into a boundary-value problem 
for the function IV (y, Z) in a domain D," with boundary I’“. The corresponding 
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equation and boundary conditions are 

w,,+ zt5+v,-zw=(2$?-~)yW, 
( (3.4) 

W(Y,Z)-+Zs, z-+00, W,(Y,O)=O, W(O,z)= P$R (3.5) 

w, + w, Jr0 = 0, W,, + W,, Ino = 0 (3.6) 

In the domain Ds”, into which D.s is mapped, the function Tiv satisfies the equation 

W, + W, = 0 (3.7) 

In domain 6, the boundary-value problem (2.10) - (2.13) yields, under ~a~fo~ation 

(3.3), a boundary-value problem in the new variables Y, z in a domain 6,” with bound- 

ary Y” 
v,,+ (z++)vz-W =(2P-+YV, (3.8) 

v (1112) 422, z---tco, V,(y,O)=O, V(O,z)=z2+~ (3.2) 

v Iyo = (2 - Y)” + n, VT \uo = 2 (2 - y) (3.10) 

The domain 6, goes over into 8,” in which, as follows from (2.14), the function 1’ is 
determined by the finite formula 

V (Y, 2) = (2 - Y)” + n (3.11) 

For p = Va the boundary-value problems (3.4) - (3.6) and (3.8) - (3.10) have exact 

analytic solutions lli. For the first of these problems we shall seek the solution in the 

form &’ (Y, z) = (z” -)- n) CD (y). Thus, the function W constructed satisfies Eq. 

(3.4) and the boundary conditions (3.5). On the boundary I’” we obtain 

2z(D (y) + (2” + 4 @ (Y) = 0, <f, (Y) + z@ (Y> = 0 (3.12) 

For a nontrivial solution to exist the determinant of system (3.12), linear and homoge- 

neous relative to @ (Y), must equal zero. Hence it follows that I’” is given by the 

equation z = v n, while Cb (Y) = C exp (- y I i/G) with an arbitrary constant C. 
From (3.5) we find that C = 1. In the domain L),’ = (Y, z : z > 2/g} the solution 

W (y, z) of Eq. (3.7) is*uniquely determined with the aid of the method of character- 
istics since the values of W (Y, z) on I’” and on the set y = 0 are known. In summary, 
the function W (Y, z) is determined by the equalities 

I 

(2” + n) e=p (- Y/ 1/;1-), O\<Z<V-T 

W(Y,Z) = 2nexp((z-y - l/a/l/q, v-i-< 2 6 y +G (3.13) 

(2 - Y)” + n9 ?/+tm<z 

Figure 1 shows the boundary I’” of domains DID and LIZ0 for p ;= V2 and n I=; 3. 
The fine lines with arrows mark the trajectories along which motion takes place at the 

instant of correction. In that part of domain Ds” where y’n < z < Y + -t/n an 
impulse correction occurs, leading the phase point onto r”, i. e. onto the set z = r/ n; 

here, not the whole control resource is spent, but that part of it determined by the rela- 
tion q.+ = y* = z - v/n in the part of domain D20, where z > Y + vn, the 
correction results in the system hitting onto the set Y = p = 0 ; in this case the con- 
trol resource is totally expended. An uncontrolled motion takes place in domain D,* = 
{y, z: z < v n} under the action of the random forces and of u = 0. Since here the 
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control resource does not change, the motion in the ( y, z )-plane takes place along the 

straight line y = q = const. Since z = r / v z, as z decreases the phase point is 

shifted toward the side of increasing 2. Correction is applied as soon as the point hits 

from domain D,” onto the boundary I’” . Thus, a sliding impulse control mode holds 

along boundary I’“, which is typical of correction problems with no restriction on the 

number of pulses. 
For the single correction problem, for p = li.L we obtain by analogous means the 

equation of the boundary z := ys (y) == ],/a (y j_ I/y2 + 4rl) and the expression 

for function 

v ($4 2) = ! -!- fz” + n> WY2 + 4n - y)“, 4fi 0 < z < 7” (y) (3.14) 

I iz - y)’ + n, z > Y (Y) 
h-r this case the domain 8,” of uncontrolled motion is given by the inequalities 0 < 

z < y” (y), while in domain 6a0, where z > y0 (y} an impulse correction is applied, 

as a result of which the control resource is totally expended and the system goes into 
the state y = q := 0. As follows from a comparison of the established functions W 
and Vand of the boundaries I’” and y”, the domain 6,” of uncontrolled motion is wider 

than rhe domain D,” and the inequality W (y, z) < V (y, z) is fulfilled. 

Fig. 1 Fig. 2 

Figure 2 shows the boundary y” of domains 6,’ and 8,’ for IB 3 and p = I/%. 

The fine lines with arrows depict the straight lines y - z const along which cor- 

rection takes place from domain 8a” with the use of the whole control resource, After 

the whole resource has been used up, motion is continued along the straight line y -: 0 

in both cases of Figs. 1 and 2. 

4. Asymptotic expanrions. For a numerical solution of boundary-value prob- 

lems (3.4) L (3.6) and (3.8) - (3.10) we construct, as a preliminary, asymptotic appro- 
ximations for functions W and V for small y. In the case of multiple correction we 
seek the solution of Eq. (3.4) in the form 

W (y, z) = W” (z) + yW’ (z) f- ya IV9 (2) -+ . . . (4.1) 

Here wh‘ (z) are unknown functions of argument 2. In addition we assume that the 
boundary :f” is given by a function I’” (y) which admits of the expansion 

z z I‘” (y) zz r0 + I’,y -j I’,y” i- . , . (4.2) 
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(F k are unknown numbers). 

Having substituted (4.1) and (4.2) into (3.4) and (3.6) and by picking OUI terms with 

like powers of 9, we obtain boundary-value problems for ordinary differential equations 
in the functions Wk (Z). 

The equation and the boundary conditions for w” (z) are 

~~~~(~~~)~~-2~~o=o, &iy(O)=O, (4.3) 

W” (2) --* 22, Z-+-O0 

Hence we find that W” (z) = z2 -j- n. The function Wr (z) must satisfy the equation 

tv,,l+(z+~)w,l-(2~+1)w1=0 (4.4) 

and the boundary condition 
Wzl (0) = 0 (4.5) 

Substituting (4,1) and (4.2) into (3.6) yields two relations 

2ro -/- Wl(JT,) = 0, 2 + Wz' (r,) = 0 (4.6) 

which are necessary for the simultaneous determination of lYO and W1 (r,). The solu- 

tion of Eq. (4.4) under condition (4.5) can be represented as a series in powers of z, 

containing an undetermined multiplier k,. In particular, for n = 2 we obtain 

The substitution of (4.7) into the boundary conditions (4.6) yields a transcendental equa- 

tion in 1’, 
W* (r,) = rOIv,* (r,) (4.8) 

which can be solved numerically. Next, from one of the conditions (4.6) we can find 

the value of k, and, by the same token, completely determine the function w’ (z). 

The boundery-value problem for w2 (z) has the form 

liv,,a + (z + +) w,2 - 4pTP = 0, w,2 (0) = 0 (4.9) 
pv,: (r,) _t fv2 (rojl ri -t w,l (r,) = - 2’cv (r,) 
wizl 0-a rr + w (cd = - 2~2 (cd 

The last two boundary conditions in (4.9) contain an unknown quantity rl. Problem 

(4.9) is solved analogously. 

The function W” (z) -/- yw’ (z) -j- y2W2 (z) satisfies Eq. (3.4) to within 0 (ys), 
while on the boundary z = r,, + r,y it satisfies conditions (3.6) to within 0 (ys), 
which suffices for the subsequent numerical calculation. A similar procedure for the con- 
struction of the asymptotic approximations is used when solving the single correction 

problem. We note that in the special case of p = 1 such an approach was applied in 

/4/ (*). 

*) Riasin, V. A., Optimal strategy of impulse correction under continuous measure- 
ments. Preprinty Inst. Prikl. Matem. Akad. Nauk SSSR, Nos. 35, 42. 
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5. Method and relulta of numerical solution. 
correction problems for dimensions I! == 1, 2, 3 of system (1.1) and for parameter 

values p z= 1, 2, 4 were solved numerically in a sufficiently large domain of varia- 

bles y, z. 

The functions W and V at the nodes of the original layer at a distance of a quantity 

IO-” from the z-axis, as well as the initial positions of boundaries I?” and y” , were com- 

puted with the aid of the asymptotic expansions to within 10e4. The solutionbf the pa- 
rabolic Eqs. (3.4), (3.8) was carried out by the standard implicit finite-differencescheme. 

The steps Ay and AZ in the variables y and z equalled 0.005. The solution of the dif- 

ference equations obtained was effected for a fixed y by the sweep method. At each 

step with respect to y the systems of transcendental Eqs. (3.6) and (3.10) relative to the 
unknown point of boundary To (or y”) and the values of the function W (or V) at this 
point, were solved by Newton’s method. As initial approximations we used the quantities 

obtained at the preceding step. The shifts of position of the boundary r” (u’) at each 

step in y did not exceed AZ. 

Fig. 3 Fig. 4 Fig. 5 

The results of the calculations are shown in ‘Figs. 3 - 5. Here the solid curves refer to 

the multiple correction case, while the dashed lines, to the single correction case. Figure 

3 shows the boundaries found of domains DID and D," as well as of 6,’ and 6,’ for p = 2 
and n = 1, 2, 3 . The domains DID, 6,' are located to the left, while D,“, 6s’ to 

the right of the corresponding boundaries I’“, y”. We see that r” and y” me;ge for 

y -+ 0, which, according to (3.3), corresponds to small z or q. The domain DIG, as 
we noted above when comparing the analytic solutions, is in all cases narrower than the 

domain a,‘, . 1. e. the domain of uncontrolled motion is smaller in the case of multiple 

correction. This corresponds in meaning to the more flexible strategy in multiple cor- 
rection. 

Figure 4 shows the boundaries r” and y0 found for n T 2 and p == I/?, 1, 2, 4. 
The solution for 11 up 1/‘L was obtained analytically. Figure 5 gives the graphs of the 
functions W (y, z) and I/ (.y, z) for p 1 and n =: 1, “. :) with a fixed $’ -= 1. 
We see that the inequality W < I-? corresponding to the fact that multiple correction 
leads to a better result, is fulfilled. The values of the performance index for all cases of 

correction with 2, 3, etc. impulses are contained, obviously, between the corresponding 
curves on Fig. 5 (p = f), g iving the magnitudes of functions W and +’ for the given 
dimension n. We also see the fulfillment of the following inequalities : 
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Here the indices n = 1, 2, 3 characterize the dimension of system (1.1). Inequalities 

(5.1) are explained if we interpret the correction problem in case n = 1 as the prob- 

lem of approaching a specified plane in a three-dimensional space at the final instant, 

the case n = 2 as a problem of approaching a straight line, and the case n = 3 as a 

problem of approaching a point. An increase in n signifies an increase in the number 
of correctable parameters, i.e. a complication of the control problem, and leads to a 

growth of the functional. Domains &‘, 8,O expand as n grows (see Fig. 3). 

In conclusion we note that each solution of the correction problem, obtained in the 

selfsimilar variables y, z, is equivalent to the solution of an entire class of optimal 
impulse control problems in the original variables ‘6, r, 4. 
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OPTIMUM TRANSLATION OF A PENDULUM 
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A controlled mechanical system consisting of a suspended load (a pendulum) , 
whose point of suspension can move along a horizontal straight line at some li- 
mited speed is considered. The optimum law of motion of the point of suspen- 
sion is established, which ensures that the pendulum moves over a specified dis- 
tance in the shortest time and is stationary at the beginning and end of transla- 
tion, i.e. oscillations are absent at the end point. 

This problem arises in investigations of optimum operation conditions of the 


